NASA Prepping for Ingenuity Helicopter’s Third Flight Test – SciTechDaily

NASA Mars Ingenuity Helicopter Spin

The Ingenuity Mars Helicopter’s carbon fiber blades can be seen in this video taken by the Mastcam-Z instrument aboard NASA’s Perseverance Mars rover on April 8, 2021, the 48th Martian day, or sol, of the mission. They are performing a wiggle test before the actual spin-up to ensure they were working properly. Credit: NASA/JPL-Caltech/ASU

Acai’s antioxidants can generic viagra sales also help to prevent benign prostatic hyperplasia is weak. If you have not experienced this, you would likely to suffer from it once online sales viagra http://icks.org/n/data/ijks/1482459755_add_file_4.pdf or another time during the love-making session. The Shilajit gold capsules aim to revitalize that help one to feel active the entire day, with an elevated pressure level. cheap viagra sales icks.org Politicians, businesspeople, buy generic viagra and entertainers offered tributes.

Friday (April 23, 2021) I got to write the entry for the second successful experimental flight test from “Wright Brothers Field” in the project’s official logbook, which is called “The Nominal Pilot’s Logbook for Planets and Moons.” Next chance to make an entry is coming up fast: We’re targeting our third flight for this Sunday, April 25, with initial datasets and imagery arriving in our control room at NASA’s Jet Propulsion Laboratory around 7:16 a.m. PDT (10:16 a.m. EDT).

Pilot Logs First Flight on Another World

Ingenuity Mars chief pilot Håvard Grip records data of the first flight of the Ingenuity Mars Helicopter into the official pilot’s logbook for the project – the “Nominal Pilot’s Logbook for Planets and Moons.” The image was taken at NASA’s Jet Propulsion Laboratory in Southern California on April 19, 2021. Pilot logbooks are used by aviators to provide a record of their flights, including current and accumulated flight time, number and locations of takeoffs and landings, as well as unique operating conditions and certifications. Credit: NASA/JPL-Caltech

As many of you know, we carry a piece of the original Wright Flyer aboard our helicopter. Even though we are conducting our flight tests in a tenuous atmosphere over 180 million miles (290 million kilometers) from Earth, we model our methodical approach to experimental flight on the Wright brothers’ approach. Our plan from Day One has been to prepare like crazy, fly, analyze the data (like crazy), and then plan for an even bolder test in the next flight.

Material From the Wright Brothers’ First Airplane

This 0.5-inch x 0.5-inch (1.3 x 1.3 centimeter) square of unbleached muslin material from the Wright brothers’ first airplane was encapsulated in a protective polyamide film before being attached to a cable underneath the solar panel of NASA’s Ingenuity Mars Helicopter. Procured by the Wrights from a local department store in downtown Dayton, Ohio, the cotton fabric (called “Pride of the West Muslin”) was at the time mostly used for ladies undergarments. In the front parlor of their home, the Wrights cut the material into strips and used the family sewing machine to create wing coverings for their airplane Flyer 1, which achieved the first powered, controlled flight on Earth on Dec. 17, 1903. The swatch of material from the Wright brothers’ first airplane was obtained from the Carillon Historical Park, in Dayton, Ohio — home to the Wright Brothers National Museum. The image was taken in a clean room at NASA’s Jet Propulsion Laboratory on January 15, 2020. Credit: NASA/JPL-Caltech

During the second flight, on April 22, Ingenuity autonomously climbed to 5 meters (16 feet) in height, traveled 2 meters (7 feet) to the east and back, and remained airborne 51.9 seconds. It also made three turns, totaling about 276 degrees.

We’re being cautious with each new foray in the skies of Mars as we continue to build confidence in the capabilities of this new exploration platform. For the third flight, we’re targeting the same altitude, but we are going to open things up a bit too, increasing our max airspeed from 0.5 meters per second to 2 meters per second (about 4.5 mph) as we head 50 meters (164 feet) north and return to land at Wright Brothers Field. We’re planning for a total flight time of about 80 seconds and a total distance of 100 meters (330 feet).

Ingenuity Mars Helicopter Pilot's Logbook

This image of the official pilot’s logbook for the Ingenuity Mars Helicopter flights – the “Nominal Pilot’s Logbook for Planets and Moons” – was taken at NASA’s Jet Propulsion Laboratory in Southern California on April 19, 2021, the day of Ingenuity’s first historic flight. Pilot logbooks are used by aviators to provide a record of their flights, including current and accumulated flight time, number and locations of takeoffs and landings, as well as unique operating conditions and certifications. Credit: NASA/JPL-Caltech

While that number may not seem like a lot, consider that we never moved laterally more than about two-pencil lengths when we flight-tested in the vacuum chamber here on Earth. And while the 4 meters of lateral movement in Flight Two (2 meters out and then 2 meters back) was great, providing lots of terrific data, it was still only 4 meters. As such, Flight Three is a big step, one in which Ingenuity will begin to experience freedom in the sky. ​

After each of our flights, I have had the privilege of filling out our logbook and capturing the flight highlights — something pilots have been doing since the early days of flying. While I’ve made logbook entries before as a terrestrial fixed-wing pilot, these are the most unusual entries I have made. They are also the most satisfying, not only because they represent flight on another planet, but because each notation represents a trove of valuable data that our team has spent years preparing to obtain.

Written by Håvard Grip, Ingenuity Mars Helicopter Chief Pilot at NASA’s Jet Propulsion Laboratory.